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ABSTRACT

70 5 ©
Error-correcting codes for use in communication channels have been
known for many years. HRecently discovered code families have enabled
economical encoding and decoding equipment to be designed for use with
even very noisy channels. These new codes provide for the automatic
correction of several independent errors in a block of transmitted digits,

or of bursts of errors in successive digits.

Within a digital computer the ‘“channel’” becomes the collection of
data paths and storage locations embodied in index, data, and control
registers and in the memories and associated input-output transfer links.
An attempt to apply existing error-checking codes to this type of channel
reveals that these known codes are not necessarily optimal, because (1)
appropriate measures of efficiency may differ from those customary in the
traditional communications channels, (2) the most probable types of errors
(noise) may not be the same, (3) one must also take into account the pos-
sibility of errors due to faults in the decoding logic (corrector) itself,
and (4) if possible, the codes should be compatible in some sense with

arithmetic and other related operations.

In this report we discuss the efficiency, cost, and optimality of
codes for use within digital systems, and evaluate to what extent known
code families can be applied to automatic error correction. To better
satisfy these criteria in the most important remalning cases, some new
codes are then described. Particular attention is devoted to error cor-
rectors which are “fault-masked’’—i.e., whose performance is insensitive
to single isolated circuit faults. Also discussed are the simplifications
possible i1f mere detection of an error is adequate. Several examples of
encoding, corrector, and detector circuits are offered, exemplifying the
use of both gate-type and branch-type logical elements. /ﬁizjz/Lf1/
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I INTRODUCTION

The use of redundancy is now well known, if not well practiced, as

a technique for improving the reliability of digital systems. It is
recognized that one may apply the redundancy within the system at one or
more levels—1i.e., by replicating the component, the logical element, the
network, the subsystem, or even the entire system. While redundant design
techniques are available for application at any level, the selection of
the best techniques and the optimum levels for a given system, family of
tfaults, and degree of protection is still a problem which is largely

unsolved.

In general, redundancy may be applied to a digital network or system
either by replicating (in some sense) the logical circuitry directly, or
by applying the redundancy to the signals which pass through the system.
For the former case of circuit redundancy, the extra equipment required
depends critically on the particular operation being performed, and it is
here that one may take advantage of any redundancy inherent in the
operation itself, and in the logical circuitry selected to realize it.

The price paid in the latter case of signal redundancy lies principally

in the extra time required for operation in a serial system, or the

larger number of iterated circuit stages required in a parallel configura-
tion. Techniques for utilizing circuit redundancy for detecting correcting,
and masking single faults are the subject of earlier reports under the

. *
present project,l?

In this report we will be concerned with signal redundancy techniques
for application at the level of the network or subsystem, with emphasis
on digital systems such as general-purpose-type computers. Both fault-
detection and fault-correction techniques will be discussed. Also, both
of the possible families of logical elements will be considered-—gate-type
elements, such as are conventionally realized in transistor-diode, magnetic,
vacuum-tube, and parametron circuitry, and branch-type elements such as
relay and switch contacts, cryotrons, and direct-coupled transistor logic-—

although we will not be overly concerned with detailed circuitry problems.

*
References are listed at the end of the report.
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The problem of applying redundancy to digital signals for the
purpose of detecting or correcting errors due to isolated circuit faults
is one of developing and selecting suitable error-detecting and error-
correcting codes. Coding theory has by now evolved to the point where
numerous codes have been developed for use in communication channels.

In particular, many recently developed code families lead to economical

encoding and decoding equipment for use with even very noisy channels %3

é

Within a digital computing system the ‘““channel’ becomes the complex
of data paths and storage locations embodied in index, data, and control
registers, and in the memories and associated input-output transfer links.
One may even want to include those portions of the system which transform,
analyze, and process the data, such as arithmetic units, code converters,
comparitors, etc. (although circuit redundancy appears to be more appro-
priate for most of these operations). An attempt to apply known error-
checking codes directly to this type of channel reveals that these codes
are not always optimum or even appropriate, because the criterion of
optimality is not the same in a computer as in communication channels.

The major differences may be summarized as follows:

(1) The effect of circuit faults is often quite different
from effect of noise in communication channels.

(2) The criterion of “efficiency” of a code depends upon
circuit cost in a more complex way.

(3) One must also take into account the possibility of
faults in the encoder and decoder themselves.

(4) The choice of code should be compatible with the other
signals and operations (arithmetic, input and output
codes, etc.) besides simple data transfer within
the system.

In the following sections we discuss the notions of noise, efficiency,
and (to a lesser extent) signal compatibility appropriate to a digital
computing system, and investigate the types of codes which should be used.
In some cases, known codes or simple modifications of them are suitable.

In others, new'codes are recommended and are partially developed. Par-
ticular attention is directed to some new code families developed at
Stanford Research Institute for communications applications, but also

567 A family of “low-density”

well-suited to digital data processing.
parity-check codes are shown to be particularly suitable for error-

correction in the parallel channel using gate-type logical elements.



Some attention is also devoted to decoders (error detectors and correctorsj)
which are single fault -masked--i.e., their performance is insensitive to

single isolated circuit faults.  Examples of such decoders are offered.

For most of the ensuing discussion, we assume no specialized knowledge
of coding theory, beyond a general appreciation of its objectives and a
few of its most elementary concepts-—the notions of parity checking, check
digits, and encoding and decoding processes, for example. By the same
token, the codes to be used are merely described, and not completely de-
rived unless they are new. The reader is referred to textbooks and other
literature for these derivations, proofs of optimality, and detailed

circuit alternatives for the encoding and decoding equipment.?

Principal emphasis 1s placed on parity-check codes for detecting or
correcting isolated single-digit errors in blocks of fixed length, with
only secondary consideration of multiple errors, bursts, and so-called
non-systematic (i.e., non-parity-check) codes. The literature may be
consulted for available information on these extensions, and on others
such as recurrent (non-block) codes, codes for the erasure channel, and

non-binary codes.?

Codes for checking simple serial and parallel data transfer and
storage operations are discussed in the next two sections. This treatment
is primarily a survey and disclosure of what is known and applicable to
digital computing systems, but includes some discussion of “low-density”
codes which are particularly suited to parallel checking with conventional
digital circuitry. Section IV investigates the savings possible when the
assumed faults cause binary errors in only one direction—e.g., 1 = 0
errors but not 0 = 1 errors. Some special codes for checking arithmetic
operations are presented in Sec. V. Section VI describes codes which are
partially serial and partially parallel, introduced with the hope of
overcoming some of the limitations of both. Finally, we discuss the
masking of faults within the encoding and decoding equipment, and make
some partial comparisons of the various codes which have been considered
No comparison 1s attempted between these codes and other redundancy
techniques such as circuit redundancy. Such comparisons are known to be
critically dependent on the particular computer or system to which the
redundancy is to be applied. These considerations and others on the
integrated use of redundancy in digital systems form the subject of other

effort under the present research project.

The discussion of each code is accompanied where possible with examples

toillustrate the type and complexity of circuitry required for encoding and decoding.

3



IT SERITAL CHECKING OF DATA TRANSFER AND STORAGE

Serial data handling will be treated first, because of its greater
simplicity, and as a means for introducing some necessary terminology.

The more popular gate-type logical elements will be assumed for the time

being.

A. CYCLIC CODES

Serial processing of data is characterized by longer operation times
but by a considerable saving in the amount of required equipment whenever
the operation to be performed is (1) iterative--i.e., when it 1s essen-
tially the same on each successive data digit of the work or block--and
(2) unilateral—i.e., when the interdigital logical dependencies extend

in only one direction, forward or backward through the word, but not both.

The first error-correcting codes developed for blocks of binary
digits satisfied neither of these properties, so that the encoders and
decoders for these codes were forced to be complicated parallel switching

circuits. 3910

This complexity effectively prevented widespread use of
these codes in digital communication, data processing, and recording
systems, even though their advantages for combating noise and disturbances

were well established and accepted.

More recently developed families of codes, called cyclic codes, sat-
isfy both of the above conditions for serialization, and very economical
circuit arrangements for serial error connection can be developed for

most of them. 1

A wealth of underlying theory allows one to determine
(1) which block lengths n can be most efficiently accommodated, (2) what
redundancy levels are required, without actually executing the details
of code design, and (3) the actual design of the encoder and decoder,
with some latitude in the required logic to take into account preferred
circuit arrangements. Other closely related code families allow one to
correct not only single isolated digit errors, but multiple isolated

errors, or (within certain limitations) bursts of errors in adjacent or

nearby digit positions.



The reader is referred to the literature for the development and
exposition of this theory, and the details of code design.® We will
confine our attention to a few examples and some bounds on the redun-
dancy required, to indicate the general complexity of the encoding and

decoding equipment,

Any systematic code can be described by its parity check matrix P,
each of whose n columns correspond to one of the n digits of the code,
and each of whose k rows correspond to one of the k parity checks. The
elements of the matrix are 0’s and 1’s, and the positions of the 1’s in
the ith row indicate which digit positions are involved in the ith parity
check. Similarly, the positions of the 1’s in jth column indicate to
which parity checks the jth digit contributes. For example, for the con-
ventional Hamming single-error-correcting code,’ having k = 3 check digits

and n = 7 digits total, the parity check matrix is

1010101
060110011
0001111

a~]
1

Thus, the first parity check is applied over Positions 1, 3, 5, and 7;
the second over Positions 2, 3, 6, and 7; and the third over Positions 4,
5, 6, and 7. The first digit contributes to only the first parity check,
etc. Any set of independent columns (e.g., Columns 5, 6, and 7) may be

selected to correspond to the check-digit positions in the word.

The fact that each column is different from all others is sufficient
condition for any single-digit error to cause a unique pattern of parity
check violations. Thus, an error in the third digit (Column 3) will

cause the first and second parity checks to be violated, and no other

single error could have the same effect. Clearly, then, a matrix with
k rows can have a number n of columns as large as 2% - 1, corresponding
to the set of all k-digit binary numbers except 0 0 ... 0. Thus, the

minimum number k of check digits needed for a block of m data digits 1is
the smallest number satisfying 2* - 1> m + k, or k = logz[m + logz(m)] =
log,(m). The number of check digits required increases rather slowly

with m.



Up to this point, any ordering of the rows and columns is equally
preferable. To achieve some degree of uniformity in the parity checking
operation over successive digits, however, we might order the columns so
that each row is a cyclically shifted version of the previous row. For
example, in the above matrix P, we might select the column re-ordering

as follows:

1110 :100
P = |0o111:010
0011 :10T1

Clearly, the second and third rows are (cyclic) horizontal unit displace-
ments of the first and second rows respectively. In this case, an addi-
tional feature may be noted; namely that the succession of digits in the

first row (and therefore all rows) obeys the simple third-order recurrence

relation

That is, each digit is the exclusive-OR (modulo-2) sum of the two digits
two and three positions to its left. The last three columns might log-
ically be selected to correspond to the three check digits. This recur-
rence property suggests that a simple encoding circuit may be possible,

in which the three check digits are attached to the end of a four-data-
digit sequence, and for which the calculation of each check digit involves
only a third-order dependence over suitably combined past digits of the

sequence, in accordance with the recurrence relation.

B, ENCODER AND DECODER

+
The complete encoder, ; I

which generates the redun- ‘ {;
dant digits, is shown in | ’] SHIFT REGISTER
. UNCODED - ENCODED
Fig. 1, and operates as —
follows: Ra-3196-2
(1) Mode A1 (switch FIG. 1 SERIAL ENCODER FOR A CYCLIC

up): The 4 SINGLE-ERROR-CORRECTING
(generally, m = PARITY-CHECK CODE

n - k) data digits
are applied in



(2)

time succession to the 3-stage (generally, k-stage) feed-
back shift register, as well as to the output. The

register operates in accordance with the above recurrence
relation.

Mode A2 (switch down): For the next 3 (generally, k) digit
times, the register is flushed into the output through the

feedback logic. The input (presumably 0's) fills the
register during this time.

The string of m + k = n output digits constitute the encoded (redun-
dant) data word, with the k check digits at the end.

R

oD
N

NOT

NOR

UNCORRECTED é CORRECTED

DELAY BUFFER

RA-3196-29

FIG. 2 SERIAL DECODER (CORRECTOR) FOR A CYCLIC
SINGL E-ERROR-CORRECTING PARITY-CHECK CODE

The decoder performs automatic correction, and is shown in Fig. 2.

It operates as follows:

(1)

(2)

Mode A—All 7 (generally, n)digits are fed in time-sequence
into the feedback shift register, as well as into a 7-digit
(generally, n-digit) delay buffer. The register operates
in accordance with the same recurrence relation as was used
for the encoder.

Mode B—For the next 7 (generally, n) digit times, the
register operates by itself with 0 data input, while the
buffer is flushed into the output; 1f and when the register
reaches the state 0 0 1 (generally, 0 0 ... 0 1), as sensed
by the NOR-gate, a 1 is fed to the final exclusive-OR gate
to complement the corresponding output digit.

The purpose of Mode A is to perform the same parity checks as were

performed in the encoder, leaving all 0's in the register if the received

data word contains no error, and otherwise leaving a ‘“corrector number’’



in the register indicative of the time-position of any single error in
the data word. This position corresponds exactly to the number of shifts
required in Mode B to return the register to the state 0 0 1 (generally,
00... 01). The “complement” signal is shown also fed back through the
register logic, a connection which returns the register to its all-0
state, and offers a partial check on the success of the correction opera-
tion. Register feedback logic is known for all values of k which could

conceivably find application.!

Serial encoders and decoders should find their major application in
situations in which errors arise while the data is in parallel form, since
all but short intermittent faults in a serial data channel result in burst

or saturation (all 0 or all 1) type errors, not single isolated errors.

We have not attempted in this description to completely derive and
Justify the circuits, which are adequately described elsewhere, but offer
them as examples of a now well-established technique in modern code de-
sign. They illustrate the type and amount of digital equipment required
for serial error correction. It is not difficult to show that the amount
of circuitry required is either minimum or very close to the minimum
needed for any code having the same error-correcting ability. Other
equally economical circuit forms are possible. One alternative arrange-
ment for the decoder combines the k-digit shift register with that portion
of the buffer corresponding to the k check digits, at the cost of an in-
crease in the timing circuitry (not specifically shown), and a reversal
of the order of the data and check digits (which complicates the encoder)
to put the latter ahead of the former in time. This arrangement would
be particularly appropriate when the buffer can be identified with one

of the existing registers of the digital system.

C. OTHER CYCLIC CODES

These techniques of automatic error correction in the serial trans-
fer of information between storage locations in a digital system can be
extended to multiple error correction, 2 both for the case when the
multiple errors may occur independently within the block of n digits,
and when they are known to be limited to a digit range or '"burst’ whose
length is substantially less than n. Burst errors would typically arise
from faults which affect a register or memory location over a range wider

than a single binary digit. In both cases, the encoder circuitry has



the same form, differing only in the selection of those register stages
which are fed back to the input exclusive-OR-gate, and in the required
length k of the register. The decoding circuitry also has the same form
except that the combinational lbgic attached to the register (corresponding

to the NOR-gate in Fig. 2) may be somewhat more complex.

Optimal or near-optimal codes are known for a wide range of values
of n, for any number e of isolated errors, and for burst length b up to

about ten. The number of redundant digits required is, very roughly,

k = e log,(n)

for isolated errors and

k= logz(n) + b

for burst errors, provided k and n are not too small. Note that compara-
tively less redundancy is required for the correction of a given number

of errors if these errors are confined to a burst.

=}

SHIFT REGISTER

b

.

h

UNCODED ENCODED

RA-3196-30

FIG. 3 SERIAL ENCODER FOR A CYCLIC
BURST-THREE-CORRECTING CODE

Figures 3 and 4 show an encoder and decoder, respectively, for a
code capable of correcting any error burst of width up to & = 3 in a
block of n = 15 digits.* Of these digits, k = 6 are check digits, and
the length of the register is k, leaving m = n — k = 9 data digits.



=3

NOR

AND

4
i 5

CORRECTED

RA-3196-3!

FIG. 4 SERIAL DECODER FOR A CYCLIC BURST-THREE-CORRECTING
CODE

D. ERROR DETECTION

If simple error detection is desired, only a single redundant (parity)
digit is required: k = 1, and n = m + 1. The single register stage with
exclusive-OR feedback is logically equivalent to a complementing flip-flop.
The encoder and decoder are shown in Fig. 5. The presence of an error is
indicated in the decoder by a ““1” ocutput e from the flip-flop after the

nth digit is received.

COMPLEMENTING

FLIP-FLOP
\\\\\ AND

! A2
UNCODED or ENCODED
(a)
! e
UNCHECKED
A2

(b}

Ra-3196-32

FIG. 5 SERIAL ENCODER AND DECODER (DETECTOR)
FOR A SINGLE-ERROR-DETECTING PARITY-
CHECK CODE
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If the single-error-correcting code is to be used instead for double-

error detection, the same encoder is employed as for single-error correc-

tion, but the decoder may now be simplified. The buffer register and

output gate are unnecessary, and the NOR and AND gates may be replaced

by a simple OR-gate over the stages of the register to indicate an error

(non-zero contents) at the end of Mode A. Mode B is not needed.

11



ITI PARALLEL CHECKING OF DATA TRANSFER AND STORAGE

Purely parallel data handling forces the decoder to be a rather com-
plex combinational switching circuit. Unfortunately, the so-called
“optimal” codes minimize the required number k of check digits rather
than the complexity of a parallel decoder. We will now describe some
“low-density’” codes which require a value of k somewhat larger than the
minimum, but lead to decoding logic that is more competitive with the

. . . .
amount of circuitry needed for serial decoding.

We first observe that any serial circuit may be converted into a

parallel, iterative, combinational circuit by means of a simple trans-

formation.!* For example, the encoder of Fig. 1 is first redrawn with

the register stages separated from the logic, as in Fig. 6(a). The logic
cell is then iterated seven times, as in Fig. 6(b), the switches being
absorbed into the wiring in position Al for the first four cells, and in
position A2 for the last three cells, corresponding to the two modes of
serial operation described previously. After some obvious simplifications,
this circuit is a valid parallel realization of the encoder for a seven-

digit cyclic single-error-correcting code.

The same transformation applied to the decoder of Fig. 2 leads to
the iterative cell shown in Fig. 7. (For convenience, Cells 8 to 14 have
been placed underneath Cells 1 to 7, and the outputs a’', b’, and ¢’ from
Cell 7 should be returned to the inputs a, b, and ¢ on Cell 8.) However,
the circuitry displayed in this figure can be simplified considerably by

starting with another code, which will now be described.

A. LOW-DENSITY CODES

The decoding logic required for any systematic code can be attributed
to (1) the execution of the set of k parity check operations defined by
the parity check matrix P, in order to determine the k-digit “corrector”

number {anon-zero value of this number indicates the location of the error);

*
Some low ‘density codes were previously introduced by Gallager.

13

12



|
l

UNCODED | 1
| ol

X om :
- ! ENCODED
ﬂ I >
L A2 |

‘L y
UNCODED — /

DIGITS ENCODED DIGITS

( b ) RA-3196-33

FIG. 6 ITERATIVE PARALLEL REALIZATION OF THE SERIAL ENCODER
OF FIG. 1

13



TYPICAL CELL

| |
J oLy ]
i e
gL J

i s s g
j T~~T

RA-3196-34

14

CORRECTED DIGITS

DECODER OF FIG. 2

FIG. 7 ITERATIVE PARALLEL REALIZATION OF THE SERIAL

UNCORRECTED
DIGITS



(2) the decoding of the corrector-number into separate signal lines, one
g P g
for the correction of each of the n - k = m data digits;* and (3) the

actual correction of these digits.

Taking these factors in reverse order, we may observe that the cost
of (3) is fixed at m two-input exclusive-OR-gates, with no immediate
possibility for direct simplification. The cost of (2) is the cost of
a k-input, m-output decoding tree; this cost increases with m at a

slightly less than linear rate.

The major contribution to the total cost of the corrector is the
set of k multi-input exclusive-OR-gates for (1). With most known types
of digital logic devices, the cost of a p-input exclusive-OR-gate in-
creases with u much faster than linearly. Consequently, we must be
prepared to reduce the number p of digit positions over which each of
the k parity checks are performed, even if k must be increased somewhat
to do this. In terms of the parity check matrix, the conditions for

this type of single-error correction may be expressed as follows:

(1) Each of the k rows has no more than a fixed number
pmof 1's.

(2) Each of the n = m + k columns is different, and
contains at least one 1.

(3) m is maximum for given k and pu.

The columns of such a matrix should therefore be formed from a set
of k-digit binary numbers, each of which has a minimum number of 1’s:
the k numbers having a single I (these being most logically assigned as
check digits, in the last k columns), and as many of the <k> binary
numbers having two 1’s, (k) numbers having three 1’s, etc.? as are needed
and as are consistent witg Condition (1). Since the first m columns of
P can contain no more than k(u - 1) £’s in all, with at least two 1's

per column, the number of columns for data digits is immediately bounded by

k(- 1)
2

We have assumed through this section that only the data digits are to be corrected. If the
entire redundant code word is to be reused, so that the check digits need to be corrected as
well, then the cost of the decoder will increase by a fraction very nearly equal to k/m
applied to portions (2) and (3) of the decoder.

15



Ve will now show by construction that this bound can actually be achieved,
for all but very small values of m and k, except for the fractional

remainder % which results from the division by 2 in case both k aund

kR(u —- 1)
= e ———————— k

([he brackets denote the integer part of the quantity within.)

u = 1 are odd:

For © = 3, then m < k, and this bound is achievable provided only

that at least k different columns with just two 1’'s can be formed:

(2)z2

i.e., provided ¥ > 3. 1In fact, the matrix whose first k columns have 1’s
in Columns j and j + 1 (mod k) and Row j (j X k) will always be adequate.
E.g., for k = 5, we may use the parity check matrix

11000;10000T
01100:01000
p= |00110:00100
00011 00010
(10001100001
Thus, for £ = 3 and # = 3, m = k is optimum.

For any value of p > 2, there exist k(yu — 1)}/2 columns having two

<k>>k(p—1)
2/~ 2

or k > 4, and the bound is achievable. For example, for p = 4 and k = 5,
then m = 7:

1's each whenever

16



_0 110000 1 000 O—
1001100 01000
P = 1000011 00100
010101 0 00010
_0 010101 000O01
and for o = 5 and k = 5, then m = 10:
-1 1110000UO0TO0 1 000 (?
1 000111000 01000
P = 0100100110 00100
0601 0010101 00010
_0 001001 011 0000 l_

Mote that when % and u - 1 are both odd, one row at P need have only
“u=-11's.

We may now invert this expression to obtain the required number k

of redundant digits in terms of m, as follows:

u o= 2 : k= 2m for m>1
w =3 : E = m for m > 3
2m + 2
wo= 4 : Eo= [-—*——-] for m > 5
3
m+ 1
Moe=5 k= 5 for m > 9

(Matrices with more than two 1’s per column may be formed to cover values
of m below these limits, but these cases are probably not of particular

interest.) For larger values of y, the bound may be similarly achieved:

k(p - 1)]
N T s E >
[ 2 ' =H

. . *
The entire decoder now requires:

It is barely possible that a less costly decoder could be achieved by combining the three portions. Except
for a few degenerate cases (such as m =1, k =2), no economies appear to result from such merging, aside
from some small savings sometimes possible by decomposing the bank of p-input exclusive-OR-gates into two
or more levels of gates with fewer inputs, but with some sharing in the earliest levels.
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k p-input exclusive-OR-gates, for determination of the
corrector number

m 2-input AND-gates, for decoding the corrector number,
and

m 2-input exclusive-OR-gates, for the final correction.

The portion of the circuit which generates each corrected output digit
is 1llustrated in Fig. 8. On a per-data-digit basis, the first contri-
bution is the only variable part. UHere, kR = 2m/(u -~ 1). Thus, if the
cost of a pu-input exclusive-OR gate increases with u according to a

linear proportion,

-1

cost v

then all values of u are equally preferable for the decoder itself. A
lower rate of increase would favor a higher value of pu, while a higher
rate of increase favors a lower value of x. The latter alternative is

probably more realistic, so that the choice is really between:

2: two 2-input exclusive-OR-gates per data digit or

@4 = 3: one 3-input exclusive-OR-gate per data digit or

4: about two-thirds of a 4-input exclusive-OR-gate
per data digit

for the only part of the decoder whose complexity depends on the value of .

The circuit of Fig. 9 displays the decoder for the example of P given
above for 0 =3, k=5, m =5,

UNCORRECTED CORRECTED
DIGIT DIGIT
[ ) A — e
k w-INPUT m AND m QUTPUT

GATES  GATES GATES

RA-3196-35

FIG. 8 A ONE-DIGIT PORTION OF A PARALLEL
DECODER FOR A SINGLE-ERROR- CORRECTING,
LOW-DENSITY, PARITY-CHECK CODE
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UNCORRECTED DIGITS
®
+
CORRECTED DIGITS

H
+
F

91+

[¢ ]

ES N
+

10 Lj/

RA-3196-36

FIG. 9 DECODER FOR A LOW-DENSITY
SINGLE-ERROR-CORRECTING
PARITY-CHECK CODE,
wo=3m=25%k =275

B. HAMMING DECODER

The choice of the optimum value of u, hence k, also depends upon the
amount of register, memory, and other “channel” equipment whose size will
be increased as k is increased. As the amount of this equipment becomes
large in proportion to the cost of the encoder and decoder, the optimum
value of u will tend to increase, up to the limit set by the Hamming
single-error-correcting codes introduced earlier for serial single-error

correction. The Hamming codes require a number k of check digits such that

m <2k -~k -1
or, inverted,
k= 1+ {log, [m+ 1+ (log, m)]}
The Hamming decoder differs from the decoder for the low-density

codes, however. For the lossless case, where the maximum number of data

digits are used for a fixed number of check digits, then



and each parity check extends over about half of the columns: p = 2F71.
The decoding tree, the second portion of the decoder, is an almost com-

15

plete oue. It may consist of either m k-input AND-gates, or p(n) -

(k + 1) 2-input aND-gates, according to a well-known structuref where

oo = A3 o)+

and

p(2) = 4 , p(l) = 0

As the value of m is reduced below 2% = 1 - k, those columns of P
having the largest number of 1’s may be deleted first, to minimize the
number of 1's per row in the remaining portion of the matrix. Table I
lists for each value of m up to 25 the largest number g of 1’s per row
in P, and the number po of 2-input AND-gates required for the decoding
tree, which is now much less than complete and is therefore somewhat less

costly. The complete cost of the ‘{iamming decoder is therefore about

kE  p,-input exclusive-OR-gates
Py 2-input AND-gates

m  2-input exclusive-OR-gates.

The relatively large cost of this decoder Table I

clearly favors the low-density codes, unless PARAMETERS OF COMPLEXITY OF
PARALLEL ENCODERS AND

the data storage locations and data paths dic-
DECODERS FOR THi:

tate the use of a small or minimal number %k of HAMMING CODE
check digits.
mok opy Py |m kopy Py
C. ENCODERS 2 3 3 3j14 5 8 29
3 3 3 51)15 5 8 30
The encoder for a low-density code of 4 3 4 17|16 5 31
. . . . 5 4 4 11|17 5 10 32
welght consists of justk (u — 1)-input
& _lJv N J H P . 6 4 4 14118 5 10 33
exclusive-OR-gates, one gate corresponding to 7 4 5 15119 5 11 34
each row of the parity check matrix. Clearly, 8 4 6 1620 5 11 36
no reduction in this total number of gates is R
) 10 4 7 1822 5 13 38
possible. Note that when p = 2, these gates 11 4 8 19/923 5 14 39
reduce to direct connections. The cost of an 12 5 7 27{24 5 15 40
encoder for a Hamming code is the same, with 135 7 28125 5 15 4l

*
The number (k+ 1) is subtracted for the unneeded check-digit correctors and for the “no-error” condition.

20



i replaced by u,, whose value is given in Table I. The complexity of
the encoder therefore varies nearly in proportion to that of the decoder,
so that the cost of the latter may be taken as an indication of the

complexity of both.

D. ERROR DETECTION

For single-error detection instead of single-error correction, a
single parity check over all digits gives the least redundancy, and
requires an m-input and an m *+ l-input exclusive-OR-gate for the encoder

and decoder, respectively.

Low-density codes offer the possibility of applying k parity checks
over just u digits at a time. Each of the checks covers up to u - 1 of
the data digits, therefore, so that the value of k required is roughly

m/(u— 1). More precisely, since the division may not come out even,

m -1
E = 1+

The decoder then consists of k pu-input exclusive-OR-gates feeding a

single k-input OR-gate which provides the error output e. The encoder

consists of k (u-1)-input exclusive-OR-gates, as before.

E. THRESHOLD ELEMENTS

If the encoder and decoder are to be constructed from threshold
elements rather than AND-gates and OR-gates, an upper bound to the cost
can be obtained by a direct conversion of the gate circuits derived above.
A p-input exclusive-OR gate can be replaced by 1 + [log2 ] threshold

6

elements.® An AND-gate driving a 2-input exclusive-OR-gate can be re-

placed by just two threshold elements. Thus, for single-error correction

using the Hamming code, the encoder has a cost
T, <k + k[log2 (g — 1)]
and the decoder has a cost

T,<2n +k + kllog, p,]

d
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For the lossless case, where pj = 2k“1 " these bounds become

7 < k% -~ &

e =
and

T, S 2n + kE = 2k*L 4 kT - 9k + 2
respectively. For example, for m - 4, then k = 3, and no more than 17
elements are required for the decoder. A decoding network utilizing

16 elements™ is shown in Fig. 10. For m = 1, then k = 2, and a single

majority gate (7 = 1) will suffice.

RA4-3196~37

FIG. 10 PARALLEL DECODER FOR 7-DIGIT HAMMING CODE
USING THRESHOLD ELEMENTS

For low-density codes, the same conversion of gates gives costs

7, < 4m and 7 < 3m, for pw =3 and p = 4. For pu =2, 7, = m simple

d
majority gates are adequate for the decoder, and no gates for the encoder

(r, = 0). These latter values are obviously minimal.
For single-error detection the conversion gives 7 =1 + [log, m)
and 7, =1 + [logz (m + 1)].

*
Another circuit requiring only 15 elements has recently been found.
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F. BRANCH-TYPE ELEMENTS

If parallel error correction is to be accomplished with branch-type
elements (such as switch contacts) instead of gate-type elements, circuits
based on either the low density or the Hamming codes may be used. Parallel
single-error-correcting encoders and decoders for the low-density codes
are shown in Fig. 11(a), (b), and (c), for the cases w = 2, u = 3, and
i = 4, respectively. In each case, the encoder consists of k circuits
like the one shown, and the decoder consists of m circuits like the one
shown. The digits of the encoded word are designated (a;, a,, ... a_,

by, by, ... b,), and the corrected word (aj, a,, ... a!). The labeling

of elements corresponds to the location of 1's in the parity check matrix P.

5 9
O T
== {_——b b‘ a\
L F];4 a'
m+1 1
01 bm +1

-
il

g, o, a 9
1
k—?{ }-7—{ —1T
0 % g, g a b
1 7 “3__‘
a G. ; 26
1 2 7 7y
}—-ﬂ—-ua']
a
7
ENCODER DECODER

RA-3196-38

FIG. 11 PARALLEL SINGLE-ERROR-CORRECTING ENCODERS AND
DECODERS FOR THE LOW-DENSITY CODES FOR (a) « =2,
(b) 1 =3 AND(c) u =4, USING BRANCH-TYPE ELEMENTS
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The total numbers ¢, and c, of branch-type elements required for

the decoder and encoder, respectively, are seen to be as follows:

noo= 2 : c, = 5nm and ¢, = 0

uo o= 3 : ¢g = 1llm and ¢, = 4n
16

uoo= 4 : c, = 26m and c¢_ = 7; m

mo= 5 : c, = 53m and ¢, = 6m

The last values are obtained by a direct extension of this circuit form.

These circuits are not known to be minimal.

Hamming-code encoder and decoder circuits for n = 3 and n = 7T are

shown in Fig. 12(a) and (b). The encoders cost 0 and 24 elements, and

the decoders cost 5 and 128 elements, for n = 3 and n = 7, respectively.

-TI:_ ———]-bl F—I—‘\ N a}

{a)

]

9%

93

ll01
1
—{ % 6 9 @ b J‘T‘[°\e°2°°39°4°’b3 I‘LE@%‘“’ZI
L
ﬁlq
I !
Il(12
>—l019°49b1 llu]eoz®o3eo4@b2 u3ea4®b3 ]_ .
—
Q
{h— 2
93
h{a]e%esz-rtc]eozec?’eq"eb] 3, ® 9, by }_q.-_.
1
II03
%2 % % 1}
4
9 © 9 80 92 @9 8 0y 9 @936 0, |e—s 0
= —ik
%

RA-3196-~39

(b)

FIG. 12 ENCODER AND DECODER CIRCUITS FOR THE HAMMING CODES FOR (a) n = 3 AND (b} n =7,
USING BRANCH-TYPE EL EMENTS
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For detection only, a simple parity check needs only 4m - 4 and
4m elements in the encoder and decoder, respectively. These values can
be extended directly to the low-density error-detecting codes, from the
knowledge that an r-digit parity circuit requires 4r - 4 branch-type

elements:12

4 - 1) (e - 2)
m

2

Cc =

4(p - 1)2

2
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IV ASYMMETRIC DIGIT ERRORS

By analogy with fault-checked switching circuits, it may be possible
to reduce the required amount of redundant circuitry if it can be assumed
that all errors are due only to the loss of 1's—i.e., to just 1 = 0
errors, rather than to both 0 = 1 and 1 = 0 errors. Codes for this pur-
pose are called f-error correcting codes, and are said to be adapted to
the binary asymmetric channel.® Present interest in them stems from a
presumed dissymmetry in the nature of faults in certain types of devices

such as magnetic cores, diodes, some transistor types, etc.

Unfortunately, only a few code families of this type are known, and
most of these codes are either no more efficient than their symmetric
counterparts, or require excessive decoding circuitry, or both., Ve will
survey briefly those l-error correcting codes which may have some prac-

tical advantages, and evaluate the encoding and decoding circuitry for each.

A. USE OF SYMMETRIC-CHANNEL CODES

It should first be pointed out that any of the codes described above
for serial or parallel error correction or detection may be used for
I-error correction or detection. In the case of 1-error correction, a
small saving in the cost of the decoder is possible because of the simple
type of correction that need be made: one or more erroneous 0's should
be changed back to 1’s. %ith gate-type elements, the output exclusive-

OR-gate(s) may therefore be replaced by inclusive-OR-gate(s).

In parallel, branch-type, single-1-error correctors, some saving is

usually possible, as follows:

Hamming code, n = 3: still 5 elements
Hamming code, n = 7: 70 instead of 128 elements

Low-density codes, u = 2: still 5m elements

L= 3: 9m instead of llm elements
pt = 4: 25m instead of 26m elements
mo= 5 49m instead of 53m elements.
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¥ith threshold elements, the parallel decoders derived previously now

require one less element per output for both the low-density codes and

the Hamming code.

B. DUPLICATION

In the asymmetric case, duplication rather than triplication of
individual digits of the data word is adequate for single 1-error cor-
rection, since a pair of disagreeing digits could have arisen only from
two 1’s, not two 0’'s. Thus, k = m check digits will allow all single
{and many multiple) I-errors to be corrected. In the parallel case the
encoder is now trivial, and the decoder consists of only & 2-input
inclusive-OR-gates (or two series branch-type elements per output, or
one threshold element per output). In the serial case, an m-digit or
a 1-digit delay is required for the encoder and decoder, depending on
whether the set of redundant digits follows the data digits as a block
or whether the redundant digits are interspersed individually. The rest
of the serial decoder consists of a single 2-input inclusive-OR-gate for

the final correction.

C. BERGER CODES

Any number of I-errors may be detected in a code whose m data digits
are augmented with k& = 1 + [logzm] check digits, the latter selected to
be the binary representation of the number of 0’s in the block of data
digits. This code suggested by Berger® will also detect any number of
O-errors, provided 1-errors and (-errors are never mixed in the same block
of digits. This code has been shown to require the least redundancy of
any all-0-error or all-1-error-detecting separable codes;? that is, those
codes for which the check digits may be specifically separated from the
data digits. JIts error-detecting ability rests on the fact that a bi-
nary number representation is a weighted-digit representation, so that
any loss of 1’s in the check-digit portion of the encoded word reduces
the binary number so represented. Loss of 1’s in the data-digit portion
increases the number of 0’s. Thus, either type of error creates a
checking discrepancy in the same direction: check number < number of 0’s
in data digits. Similarly, any one or more (O-errors will create a dis-
crepancy in the opposite direction. Thus, no combination of I-errors or
combination of 0O-errors can occur which will allow the check to remain

satisfied.
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The serial encoder and
13(a)

and (b), respectively. are

decoder shown in Fig.

fairly obvious realizations
of the counting operation,
requiring in each case a set
of k flip-flops which can
both operate as a binary
counter for the first m dig-
its, and then be shifted out
serially for the next k dig-
its. The gate-type parallel
versions are apparently best
generated as k-cell iterative
equivalents. Branch-type
parallel networks are most
naturally realized as reduced
m-variable symmetric-function

0

networks.? The number ¢ of

SBC

VA {Count)
A2 (Shift) Al

Uncoded Encoded

OR

(a)

SB8C

A
AZ(shiff) ((‘ic:unt)

Unchecked

{b)

. RA-3196-40

FIG. 13 SERIAL ENCODER (a) AND DECODER (b) FOR
BERGER ALL-1-ERROR-DETECTING CODE

elements required for the encoder is shown as a function of m in Table IT,

and an example of an encoder for m = 5, k = 3, is shown in Fig. 14.

decoder network costs

identical structure.

Table II

BREQUIRED REDUNDANCY AND
COST OF PARALIEL ENCODER
FOR BERGER CODE USING
BBANCH-TYPE ELEMENTS

m k @
2 2 6
3 2 13
4 3 29
5 3 48
6 3 68
7 3 88
8 4 123
9 4 166
10 4 209
11 4 252
12 4 296
13 4 340
14 4 384
15 4 428
23 5 1140
31 5 1876

about 10% more than the encoder,

D.

The

and has an almost

NON- SEPARABLE CODES

A few codes for the asymmetric channel
are available which are non-separable—that
is, the codes do not allow a separation of
the digits into data digits and check digits.
In general, these codes do not even provide
for a number of data-digit code combinations

equal to a power of two. Typical of such

codes is the family of fixed-weight codes. %
In the most efficient case for all-f-error-
detection, every valid code combination

contains just [n/2] 1's. The decoder is
then expected to verify that a received

code word is one of the ) words having

(721

28



just this number of 1’'s. A simple counter (parallel or serial) 1is
adequate. These codes are sometimes used in conjunction with memories

to provide more reliable operation of the access circuitry, but their

use for data purposes is normally excluded because of their non-separable
property. Also, the logical circuitry required for conversion between

fixed-weight codes and more standard codes is gquite complex.

A few efficient single I-error correcting codes are known, but

these are also non-separable.V

o

R
g1 K
02 63 L_{u“
FytE—r
a a 5
i
EI as a3 a

Ko

I % 93 %

o

RA-3196-4I

FIG. 14 ENCODER FOR BERGER ALL-1-ERROR
DETECTING CODE USING BRANCH-TYPE
ELEMENTS
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V CODES FOR ARITHMETIC OPERATIONS

A family of simple codes developed by Brown findsa natural application
in the detection and correction of single errors in data words subject to
processing through an arithmetic unit.® As was the case with the serial
use of single-error codes in a previous section, Brown’s codes are most
appropriate for checking errors which occurred during parallel rather than
serial transfer and processing of data. (The encoding and decoding may
be done either serially or in parallel, however.) They are capable of
detecting or correcting any single-digit error originating in the trans-
fer or storage of either operand, or of the sum (or difference), or in
any single carry digit, even if any of these errors should themselves re-
sult in the propagation of a chain of one or more carries. Compared to
the parity-check codes already discussed, only an extra digit or two of
redundancy is required for this extra arithmetic protection. The encoding
and decoding processes can be readily implemented, and their serial reali-
zations are not very much more complicated than the corresponding encoders

and decoders for non-arithmetic codes.

A. SINGLE-ERROR DETECTION

To encode an m-digit binary number a = (a 1 Gaigs eee @G, ao) in
m m
Brown’s single-error-detecting code, we simply multiply it by 3. The re-
dundant form A = 3a may be added or subtracted to other redundant numbers
without violating the ‘“divisible by three” condition:

C = A*+B = 3a+3b = 3(atb) = 3¢

The number k of redundant digits added is clearly just two:

This code can be considered as a “fortified’’ version of the simple parity-

check code, which requires only one redundant digit.
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In handling numbers A, B, etc., through an arithmetic unit, a single
error in any one of A, B, C, or a carry signal has the effect of adding
or subtracting a power of two to the n-digit output number C. Since
every power of two 1is not divisible by 3, the resulting incorrect value

of C will not satisfy a ‘““divisible by three’’ check.

For the encoder, the operation of multiplying a number a by three

can be implemented by adding a to itself left-shifted once-—that is,
A = 3a = a+ 2a

In a serial encoder, the shifting corresponds to a one-digit delay.
Figure 15(a), (b) shows two realizations of such a circuit, which 1s an
enlarged version of a serial full adder. The parallel version is most
naturally the iterative equivalent of one of these circuits, and requires
n identical cells with the same logic as in Fig. 15(a) or (b), prior to

end-cell simplification.

___G‘_,

(a}

e
\J
(b) RA-3196- 42

FIG. 15 TWO VERSIONS OF A SERIAL “MULTIPLY BY THREE”
NETWORK

For the decoder, it is only necessary to verify that the redundant

number A = 720 A2¢ is zero to the modulus 3:
=
n—-1 .
- A2 = 0 (mod 3)
i=0 '
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But since 2' = 1 or -1, according as i is even or odd, respectively, this

test is equivalent to

S A, - 'S A = 0 (mod 3)

Thus a 3-counter arranged to count cyclically by an amount +1 or -1 on
alternate 1-digits of A can perform the test. Any non-zero content in

the counter ;ffer n digits have passed indicates an error. Figure 16
displays one form of such a circuit. The center delay unit in this figure

*
operates as a 2-counter:

to provide the alternation between +1 and =1 on the digits of A. The

other two delay units are interconnected as a reversible 3-counter:

RA-3196-43

FIG. 16 ONE FORM OF A NETWORK TO TEST A
SERIAL DATA SIGNAL FOR DIVISIBILITY BY
THREE

.
See Ref. 21 for the sequential-logic notation.
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+1 ¢ 01—>10—>11-—>(01)
-1 . 0l-—11—>10—(01)

with logic

Ay, Ay,y; o Ay,y; o Ay,

[
——
1

vy = Ay, e Ayy; e Ay,yg @ Ay,

Conversion to parallel logic allows one to dispense with the 2-counter,

and simply to employ an alternation of two different kinds of cells:

+1 cell (y, = 0) : y; = Zyl e Ay,
Yo = Yy e Ay,
“lcell (y; = 1) : y;, = ¥y, oAy,
yo = Ay, e Ay,

Other operations besides addition and subtraction can also be per-
formed with this code, but some adjustment or correction of the result
may be necessary. For example, two’s-complementation of a number, normally
obtained by complementing individually eacn binary digit:
b = 2 -1 ~ a

now requires a correction to be made:

B = 3 = 32" -3 - 3a

(2" -1 - A) - (272 +2)

Thus, following binary complementation, the number 0100...0010=2""2 +2
must be subtracted from the result to obtain the complement of a re-

dundant number. Brown® proposed the alternative redundant representation

A = 3¢ +2° 41
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instead of A = 3a, to reduce the correction term to zero, but this now

forces the correction to be made after each addition.

A binary counter may be simply modified to count in the redundant

code-—that is, by “three’s.” The logic is easily derived by known methods:?

! - . -
Xy T X, @ X, (X, g .. x3(x2 + xl) 1 kR = 3,4, ... n
and x; = X, xé = %, ® ;. The usual equations are
t _ . -
Xy T X, @ X, X, g ... XgX,X, 1 R =1, 2, ... n

B SINGLE-ERBROR CORRECTION

The same family of codes is appropriate for the correction of errors,
except that the multiplier should not be three, but one of certain per-

missible larger numbers. Table III

lists some of these values of the Table III
multiplier v, along with the maximum PERMISSIBLE MULTIPLIERS 7y AND
m which can be used for each, and the ASSOCIATED CODE PARAMETERS FOR

SINGLE -EPROR-CORRECTING CODES

regquired number k of redundant dig- FOR ARITHMETIC OPERATIONS

its.® For comparison purposes, the
number k, of check digits required Y = k n ky
for the single-error-correcting 13 2 4 6 3
. . 19 4 b) 9 3
Hamming code having the same value 23 6 5 11 4
. , 29 o | 5 | 14 4
of m is also listed. 37 12 6 18 5
. . 47 17 | 6 | 23 5
The encoding operation, “multi- 53 20 6 26 5
ly by 7, i lex, and o | 24 | 6| 30 | 3
,” 1s now more complex, an
ply By 7h o , P 61 | 26 | 7 33 5
standard arithmetic procedures appear
‘ 71 | 28 | 7 | 35 6
to be most natural, except possibly 79 32 7 39 6
, 83 | 34 | 7 | a1 6
for a few values of 7y for which the 101 42 8 50 6
_ R _ . 103 | 43 | 8 | 51 6
binary multiplication might be “wired -

in” rather than programmed. For ex-

ample, serial multiplication of a number a by v = 37 = 100101 could be
accomplished in two stages of full addition by adding together a, D?a,
and D3(D%2a) (where the operator D indicates one digit of delay). Simi-
larly, multiplication by 13 or 19 could be accomplished with just two
full adders and a few delays.
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To decode, standard arithmetic procedures may again be employed to
determine the residue (remainder) after division by . If this residue
is zero, no error has occurred. A single error in the rth digit posi-
tion will leave a residue of 2", reduced modulo v. The number » of the
digit to be corrected, and the sign of the correction, might be determined
by a table look-up procedure. The table would provide r and the sign of
the correction for each of the possible residues 1, 2, ... ¥ — 1. [Note
that n = (y - 1)/2.]

Brown gives an alternative algorithm, which has been implemented by

Peterson in a circuit for serial correction.?

C. ASYMMETRIC ERROR CORRECTION

Codes for the correction of single 1-errors instead of all single
errors may be easily derived by using the same values of v as in Table III,
but allowing n to increase from (y — 1)/2 to v - 1. k stays the same, so
that the maximum allowable m is also increased by (y - 1)/2. Thus, the
fractional redundancy required is about one-half the previous value. This
reduction is possible because of the fact that the set of all possible
errors in A is now smaller, since these errors are all of the same sign

(~27) instead of either sign (+27, for r = 0, 1, 2, ... n ~ 1).

The reduction in the required value of v for the same value of m is
reflected in the encoder in a simplified multiplication circuit. For
example, the earlier example (y = 37) gave m = 12 data digits and re-
quired two full adders and five unit delays for encoding. For 1-error
correction, a smaller value of y(y = 19, say) allows just as many data
digits (m = 13), but requires two full adders and only four unit delays.

The decoder is similarly simplified.
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VI SERIES-PARALLEL CODES

Some of the disadvantages of both series and parallel codes may be
avoided through the use of codes in which the digits are dispersed both
in time and space. The diagram of Fig. 17 depicts a double-parity-check
code. A two-dimensional array of data digits is augmented with a row of
check digits, selected to satisfy parity checks over each column indi-
vidually, and a column of
check digits, selected to

satisfy parity checks over

each row individually. It

may be shown that (1) the

corner check digit is consis-
4

tent, satisfying both the row

%

NN

and column checks of which 1t

is a part, and (2) the result- Ra-3196-a2
ant array is capable of FIG. 17 DIGIT ARRAY FOR A DOUBLE-PARITY-CHECK
either triple error detection, CODE

or single-error-correction

plus double-error-detection. If we identify one of the dimensional direc-
tions of the array (say, the horizontal direction) with time, then an
encoder and decoder can be envisaged in which the row checks are performed
serially and the column checks in parallel. Subject to certain assumptions
about the kinds of errors to be expected in such a channel, this series-

parallel arrangement can be expected to require less equipment for the

same total number m of data digits and the same degree of fault protection.

Actually, there are so many ways in which two-dimensional and multi-
dimensional codes can be formed, utilized, and implemented that a compre-
hensive coverage of the possibilities is out of the question here. The
individual codes themselves and the notion of two-dimensional checking are

22 and most of the principles of

adequately discussed in the literature,
implementation have been discussed earlier in this report for the serial
and parallel portions separately. Consequently, we will confine our

attention to a single example of some potential practical utility.
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Let a block of m = n.m
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|

Berger code individually om

each row, then with one row > Time
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of check digits, selected to
FIG. 18 TYPICAL DIGIT ARRAY FOR A SERIES-

satisfy individually all
PARALLEL ERROR-CHECKING CODE

column parity checks

(Fig. 18). (Note that the

corner check digits cannot

now be consistent, but are generated only by the parity checks.) Thus,

a separate serial encoder and decoder for each row can provide for the
detection of any unumber of I-errors or any number of (-errors in any omne
or more rows (but not both in the same row). If such errors are confined
to a single row, however, a parallel column parity check can effectively
indicate just which columns are in error, so that such errors may be

readily corrected.

The encoder and decoder are shown in Figs. 19 and 20, respectively.
Each shifting binary counter (SBC) operates as for the purely serial
Cerger code (Fig. 14), counting 0’s for the first m digits, then shifting
out serially for the next k digits. The parity digit is generated with
the large exclusive-OR-gate. In the decoder, these m, counters first
operate to determine which row, if any, contains the errors. A set of
m, flip-flops then retain this information so that the delayed block of

digits may be corrected by means of the column parity check.

This circuit arrangement is therefore capable of automatically cor
recting any number of I-errors or any number of O-errors (but not both)
in a single row. With the addition of a small amount of additional logic
circuitry (the network L), automatic error detection can be obtained for
the same types of errors in any number of rows, and for any set of mixed
O-errors and I-errors in any one row (and most of those in multiple rows,
too). Furthermore, many types of faults in the decoder itself are cor-

rected and detected by this arrangement.
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Series-parallel codes appear to hold considerable promise for
reducing the cost of the coding circuitry below the large values re-
quired by purely parallel codes, but still providing protection against
the types of faults which are normally not checked without triplication
in a serial channel. Also, their potential for arithmetic checking

merits investigation.
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VII FAULT-MASKED ENCODERS AND DECODERS

Consider now what steps need be taken to render the encoder and
decoder insensitive to their own faults. A number of such fault-masking
redundancy techniques are available. The two most popular are (1) trip-
lication with voting, usually attributed to von Neumann® [Fig. 21(a)],
and requiring 3*:1 redundancy, and (2) a form of component replication,
which is applicable to either branch-type logical elements, as studied
by Moore and Shannon! [Fig. 21(b)], or to gate-type elements, as proposed
by Tryon® [Fig. 21(c)], both with 4:1 redundancy.

In most purely serial networks, these two techniques (or simple ex-
tensions of them) appear to be the only reasonable alternatives for pro-
tection against arbitrary single faults, because of the lack of any

inherent redundancy in the operation being performed or in the circuitry

\\\
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FIG. 21 SOME ELEMENTARY FAUL T-MASKING TECHNIQUES
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itself. 1In parallel circuitry, however, it is usually possible to take
advantage of existing redundancy in the operation (i.e., the multiple
outputs) or in the circuit to reduce the redundancy ratio below 3:1 or
4:1. This is particularly true of iterative networks, and therefore of

some of the parallel encoding and decoding networks. %

With regard to parallel encoders, it should first be observed that
so long as the outputs are formed separately (as in the case with almost
all those discussed), a single fault can have no greater effect than a
single error in the “channel’” itself. Consequently, provided that the
encoder and channel together are assumed to be limited to a single fault,

the encoder is protected along with the channel.

For parallel decoders, faults in the input lines are similarly
handled, but the possibility of faults in the exclusive-OR-gates which
compose the first and major portion of the decoder requires that addi-
tional parity checks be performed, in such a manner that the corrector
number (the set of outputs of these ¢ multi-input exclusive-OR-gates) 1is
itself made redundant. This can be done by applying a second error-
correcting code to this corrector number, and augmenting the circuitry

accordingly.

For a decoder based on the Hamming single-error-correcting code,

having the parity-check matrix (for k = 4, n = 15, for example)

o O O
o o = o
o O =
o = ©o o
= I
S = O
= e e
-~ o o o
- o O
N N =)
[ N e )
—_ - o O
- O
e =)
— e =

we want to increase the number of parity checks so that any single er-
roneous parity-check digit can be corrected. This is easily done by
applying a Hamming single-error-correcting code to the columns of P,
treating each column as the 4-digit data portion of a code word in the
Hamming code.’ The 3 check digits required will then add three more

rows to the matrix:
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_1 010101010101 01—
01100 100110011
000111100001111
p, - 0000000111111
: 110100101101001
1100110100110 0°71
Ll 0110101010010 1.J
The first portion of the decoder therefore consists of not k& = 4, but

K = 7 exclusive-OR-gates. Generally

K

Bt 1+ [logy(k + 1+ [log,kl)]

where ;

Foul
1]

1 + Dogz(m + 1 + [logzm]ﬂ

In terms of v(x) = 1 + [log x] = the number of digits in the binary rep-

resentation of x, then
o= pn) + p(ep(n))

where d(x) = V(x + V(x)). [In this same notation, k = ¢(m).]

The second portion of the decoder consists of a decoding tree having
7 inputs and 11 outputs (generally, K inputs and m outputs). Each output
takes on the value 1 for one of the valid input combinations of the Hamming
code, plus all non-valid input combinations which differ from it in just
one digit. This type of tree is irredundantly realized most naturally as
a collection of AND-gates and inclusive-OR-gates. One of the redundancy
techniques of Fig. 21 may then be applied. If the AND- and OR-gates are
realized with diodes in the conventional manner, the less expensive circuit
of Fig. 21(d) may be used to protect against faults in the diodes them-

selves, neglecting the possibility of defective output resistors.

There may be some (as yet unknown) way to fault-mask the decoding
tree by taking advantage of the fact that a single system fault cannot
render both the input signals incorrect and the tree itself defective.
Thus, the tree need be internally masked for only the valid (error-free)

input-variable combinations. It should also be possible to take advantage
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of the fact that only one output of the tree has the value 1 at any one

time. These two possibilities have not been explored.

Faults in the third portion of the decoder-—the bank of output
exclusive-OR-gates—will generally go uncorrected, so long as the repre-
sentation of the output data is not itself redundant. This is a basic
limitation. If such faults are felt to be sufficiently likely, the point
in the system at which the redundancy is dropped (i.e., the decoder)

should be moved further down the channel.

The method of applying a second error-checking code over the first,
as proposed above, can also be used for the low-density codes. The
Hamming codes may be used for this purpose, although the fact that each
column of P has only one or two 1’s may allow some economy in the number

of additional rows required when k is large, or in the decoding circuitry.

Decoders (error detectors) for error-detecting codes may be given
the protection of single-fault-detection by the same principle. One ad-
ditional check digit must be provided (K = k + 1) to guarantee that a
parity check is satisfied over the set of all check digits. For the
simple parity check code, for which P = [1 1 1 ... 1 : 1], the parity
checker is simply duplicated:

111 ...1:1
c 111 ...1 1

An output two-input OR-gate then indicates when either check fails. For
the low-density error-detecting codes, a single m-input checker would suf-
fice, but an additional k checkers are needed 1f the limitation to u-input
gates is retained. In both cases, therefore, the cost of the decoder is

approximately doubled.

It may be considered adequate to provide only fault-detection in the
decoder which implements an error-correcting code.® If this is the case,
we may add a single extra row to P: K = k + 1. The decoder will be in-
creased by one additional exclusive-OR-gate in the first portion, and by
one K-input exclusive-OR-gate for fault detection in the second portion.
The first of the gates is automatically protected, and faults in the

second can be masked by duplication, if desired.

43



Fault-masked decoders realized with branch-type elements appear to

be very intricate. Lofgren27 offers the network of Fig. 22 as a single-

fault-masked version of the network shown ir Fig. 11(a) and Fig.

12(a).

This network is insensitive to any single short or open circuited element.

The redundancy ratio is 14/5 = 2.8, which is clearly better than the 4.0

required by the method illustrated in Fig. 21{b). Masked networks with

less than 4:1 redundancy which correspond to the other networks of Figs. 10

and 12 are not known.
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FIG. 22 LOFGREN'S SINGLE-FAULT-MASKED SINGLE-
ERROR-CORRECTING NE TWORK, CORRESPOND-
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FIG. 11{a)
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VIII CONCLUSIONS

The objectives of the program of which this report forms a part are
concerned principally with redundancy techniques and their application to
improving the reliability of digital systems. This report purports to
describe known and new techniques for this purpose. No serious attempt
has been made to compare at this time their applicability and value with
other techniques discussed previously. The integrated use oi various
redundancy techniques at one or more levels throughout a digital system
is the subject of current study under the present program, and will be

reported upon at a later time.

We have attempted in the preceding sections to provide techniques
and examples of the use of error-checking codes for compensating for a
limited number of faults in certain principal portions of a digital
system. iecause the problem is not so much one of the existence but the
economy of the techniques and their resultant circuits, approximate costs
of the encoder and decoders have been calculated, under a reasonable and

typical set of assumptions as to the type of circuitry being used.

Table IV summarizes the combined costs of the encoder and decoder
for the parallel realizations of most of the single-error-correcting codes
discussed in previous sections. The number of conventional gate-type
elements, threshold elements, and branch-type elements are shown separately.

¢

The final decision as to the “best’” code clearly depends upoun the type of
elements being used, and would usually also depend upon other unlisted or
partially listed features of these elements—e.g., the number of element
inputs. As mentioned before, the optimum value of k is a compromise
between simplified checking circuitry and the reduced size of the redundant

4

portion of the “channel.”

The costs in Table IV do not include those for masking faults in the
decoder itself. The increase required for masking varies considerably
with the logical elements used, the types of faults assumed, and the

degree of protection desired.

It has been shown elsewhere that signal redundancy suffers from

certain basic limitations: for all but a definable minority of logical
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Table IV

COMBINED COSTS OF PARALLEL ENCODERS AND DECODERS FOR
SINGLE - ERROR-CORRECTING CODES

NUMBER OF GATE-TYPE ELEMENTS :
Numger oF | NOMBER OF
CODE k 9.1 r~Input EX-OR THRESHOLD
-Input 2-Input ELEMENTS TYPE
AND EX-OR | - ELEMENTS
number) (i)
Low-density, u = 2 2m m 3n 0 -- m 5m
u =3 m n 2m m 3 6m 15m
u=4 [__3___2111 A 2] m m t 2 'lgém -%ém
u=35 [%l] m m /,: é‘ Sm 59m
amming, m=1 2 2 1 0 - 1 5
n=4 3 4 0 {g 3 } 2 152
Ko + 982
general &(m) P, m { i #09_1} 2n -k2k *

R .
For lossless case; in general, 7 < 2n + k[log2 ;1,0] + k[logz (}1,0 - 1)]..

circults, there exist some types of faults whose errors no amount of

8 This theoretical limitation need not

signal redundancy can correct,”?
overly concern us, however, for three reasons. First, this minority
includes several circuit operations of considerable practical importance,
such as simple data transfer, parity checking, and linear (i.e., pure
exclusive-OR) logical circuits generally. Second, we rarely need to pro-
tect a circuit against all possible faults, but only a selected class
deemed to be the most likely. Third, it has recently been shown that,

under certain reasonable assumptions, a network can be made arbitrarily

reliable with the proper combination of signal and circuit redundancies.!

We may legitimately conclude that several known and some new codes
can be fruitfully and economically applied to the problem of increasing
the reliability of a digital network or system, provided only that the

$

limitation to “single-fault-checking’ actually covers all but a small
fraction of the expected types of failures. This will be the case pro-
vided the irredundant version of the network or the system is already
sufficiently reliable so that the likelihood of double faults is truly
negligible. This point of view is identical to that taken in coding

theory in order to remove from an otherwise logical-combinatorial problem

¥

Private communication from J. D. Cowan of MIT.
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all probabilistic considerations. Thus, we normally speak of single-
error-correcting or double-error-detecting codes, in preference to codes

having a fixed probability of uncorrected or undetected error.

Further work is warranted in refining the costs of some of the de-
coding circuits discussed, particularly those based on codes for checking
arithmetic operatiouns. Also, 1t is conceivable that future effort in
coding theory will uncover some improved codes of this class whose en-
coders and decoders are as simple, say, as those in Figs. 1 and 2 for the
single-error-correcting codes. Finally, improved circuits for fault-
masked correctors are needed for most of the cases considered in this
discussion, but particularly for gate-type realizations of serial,

parallel, and series-parallel codes for arithmetic checking.
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